Exact traveling wave solutions of some nonlinear evolution equations
نویسندگان
چکیده
منابع مشابه
Exact traveling wave solutions of some nonlinear evolution equations
Using a traveling wave reduction technique, we have shown that Maccari equation, (2?1)-dimensional nonlinear Schrödinger equation, medium equal width equation, (3?1)-dimensional modified KdV–Zakharov– Kuznetsev equation, (2?1)-dimensional long wave-short wave resonance interaction equation, perturbed nonlinear Schrödinger equation can be reduced to the same family of auxiliary elliptic-like equ...
متن کاملExact traveling wave solutions for system of nonlinear evolution equations
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolu...
متن کاملExact Periodic Wave Solutions to Some Nonlinear Evolution Equations
In this paper, the extended mapping method with symbolic computation is developed to obtain exact periodic wave solutions for nonlinear evolution equations arising in mathematical physics. Limit cases are studied and new solitary wave solutions and triangular periodic wave solutions are obtained. The method is applicable to a large variety of nonlinear partial differential equations, as long as...
متن کاملNew Exact Travelling Wave Solutions for Some Nonlinear Evolution Equations
In this paper sub-equation method with symbolic computational method is used for constructing the new exact travelling wave solutions for some nonlinear evolution equations arising in mathematical physics namely,the WBK, Z–K equation, and coupled nonlinear equations . As a result,the traveling wave solutions are obtained include, solitons, kinks and plane periodic solutions. It worthwhile to me...
متن کاملExact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical and Applied Physics
سال: 2014
ISSN: 1735-9325,2251-7235
DOI: 10.1007/s40094-014-0114-z